🎄前言
当需要排查各种内存溢出问题、当垃圾收集成为系统达到更高并发的瓶颈时,我们就需要对这些“自动化”的技术实施必要的监控和调节。
🎄堆空间的基本结构
回顾上一节的结构图:
🎄内存分配和回收原则
🍭原则1:对象优先在 Eden 区分配
大多数情况下,对象在新生代中 Eden 区分配。当 Eden 区没有足够空间进行分配时,虚拟机将发起一次 Minor GC。下面我们来进行实际测试一下:
class GCTest {
public static void main(String[] args) {
byte[] allocation1, allocation2;
allocation1 = new byte[30900*1024];
}
}
在Idea中设置JVM参数:
-XX:+PrintGCDetails
查看日志信息:
再为
allocation2
分配内存会出现什么情况呢?
当 Eden 区没有足够空间进行分配时,虚拟机将发起一次 Minor GC。GC 期间虚拟机又发现 allocation1
无法存入 Survivor 空间,所以只好通过 分配担保机制 把新生代的对象提前转移到老年代中去,老年代上的空间足够存放 allocation1
,所以不会出现 Full GC。执行 Minor GC 后,后面分配的对象如果能够存在 Eden 区的话,还是会在 Eden 区分配内存。可以执行如下代码验证:
class GCTest {
public static void main(String[] args) {
byte[] allocation1, allocation2, allocation3, allocation4, allocation5;
allocation1 = new byte[30900*1024];
allocation2 = new byte[30900*1024];
allocation3 = new byte[1000*1024];
allocation4 = new byte[1000*1024];
allocation5 = new byte[1000*1024];
}
}
🍭原则2:大对象直接进入老年代
大对象就是需要大量连续内存空间的对象(比如:字符串、数组)。
大对象直接进入老年代的行为是由虚拟机动态决定的,它与具体使用的垃圾回收器和相关参数有关。大对象直接进入老年代是一种优化策略,旨在避免将大对象放入新生代,从而减少新生代的垃圾回收频率和成本。
- G1 垃圾回收器会根据
-XX:G1HeapRegionSize
参数设置的堆区域大小和-XX:G1MixedGCLiveThresholdPercent
参数设置的阈值,来决定哪些对象会直接进入老年代。 - Parallel Scavenge 垃圾回收器中,默认情况下,并没有一个固定的阈值(
XX:ThresholdTolerance
是动态调整的)来决定何时直接在老年代分配大对象。而是由虚拟机根据当前的堆内存情况和历史数据动态决定。
🍭原则3:长期存活的对象将进入老年代
既然虚拟机采用了分代收集的思想来管理内存,那么内存回收时就必须能识别哪些对象应放在新生代,哪些对象应放在老年代中。为了做到这一点,虚拟机给每个对象一个对象年龄(Age)计数器。
大部分情况,对象都会首先在 Eden 区域分配。如果对象在 Eden 出生并经过第一次 Minor GC 后仍然能够存活,并且能被 Survivor 容纳的话,将被移动到 Survivor 空间(s0 或者 s1)中,并将对象年龄设为 1(Eden 区->Survivor 区后对象的初始年龄变为 1)。
对象在 Survivor 中每熬过一次 MinorGC,年龄就增加 1 岁,当它的年龄增加到一定程度(默认为 15 岁),就会被晋升到老年代中。对象晋升到老年代的年龄阈值,可以通过参数 -XX:MaxTenuringThreshold
来设置。
🍭原则4:主要进行 gc 的区域
针对 HotSpot VM 的实现,它里面的 GC 其实准确分类只有两大种:
部分收集 (Partial GC):
- 新生代收集(Minor GC / Young GC):只对新生代进行垃圾收集;
- 老年代收集(Major GC / Old GC):只对老年代进行垃圾收集。需要注意的是 Major GC 在有的语境中也用于指代整堆收集;
- 混合收集(Mixed GC):对整个新生代和部分老年代进行垃圾收集。
整堆收集 (Full GC):收集整个 Java 堆和方法区。
🍭原则5:空间分配担保
空间分配担保是为了确保在 Minor GC 之前老年代本身还有容纳新生代所有对象的剩余空间。
🎄死亡对象判断方法
堆中几乎放着所有的对象实例,对堆垃圾回收前的第一步就是要判断哪些对象已经死亡(即不能再被任何途径使用的对象)
🍭引用计数法
给对象中添加一个引用计数器:
- 每当有一个地方引用它,计数器就加 1;
- 当引用失效,计数器就减 1;
- 任何时候计数器为 0 的对象就是不可能再被使用的。
这个方法实现简单,效率高,但是目前主流的虚拟机中并没有选择这个算法来管理内存,其最主要的原因是它很难解决对象之间循环引用的问题。
🍭可达性分析算法
这个算法的基本思想就是通过一系列的称为 “GC Roots” 的对象作为起点,从这些节点开始向下搜索,节点所走过的路径称为引用链,当一个对象到 GC Roots 没有任何引用链相连的话,则证明此对象是不可用的,需要被回收。
下图中的 Object 6 ~ Object 10
之间虽有引用关系,但它们到 GC Roots 不可达,因此为需要被回收的对象。
哪些对象可以作为 GC Roots 呢?
- 虚拟机栈(栈帧中的局部变量表)中引用的对象
- 本地方法栈(Native 方法)中引用的对象
- 方法区中类静态属性引用的对象
- 方法区中常量引用的对象
- 所有被同步锁持有的对象
- JNI(Java Native Interface)引用的对象
对象可以被回收,就代表一定会被回收吗?
即使在可达性分析法中不可达的对象,也并非是“非死不可”的,这时候它们暂时处于“缓刑阶段”,要真正宣告一个对象死亡,至少要经历两次标记过程;可达性分析法中不可达的对象被第一次标记并且进行一次筛选,筛选的条件是此对象是否有必要执行
finalize
方法。当对象没有覆盖finalize
方法,或finalize
方法已经被虚拟机调用过时,虚拟机将这两种情况视为没有必要执行。被判定为需要执行的对象将会被放在一个队列中进行第二次标记,除非这个对象与引用链上的任何一个对象建立关联,否则就会被真的回收。
🍭引用类型总结
🌴四种引用类型
无论是通过引用计数法判断对象引用数量,还是通过可达性分析法判断对象的引用链是否可达,判定对象的存活都与“引用”有关。
JDK1.2 之前,Java 中引用的定义很传统:如果 reference 类型的数据存储的数值代表的是另一块内存的起始地址,就称这块内存代表一个引用。
JDK1.2 以后,Java 对引用的概念进行了扩充,将引用分为强引用、软引用、弱引用、虚引用四种(引用强度逐渐减弱)
强引用:这是最常见的引用类型。如果一个对象具有强引用,那么它不会被垃圾收集器(Garbage Collector,简称GC)回收。即使系统内存不足,Java虚拟机宁愿抛出OutOfMemoryError错误,使程序异常终止,也不会靠随意回收具有强引用的“存活”对象来解决内存不足的问题。
Object strongReference = new Object(); // 强引用
软引用:软引用是用来描述一些还有用,但非必需的对象。只被软引用关联着的对象,在系统将要发生内存溢出异常前,会把这些对象列进回收范围之中进行第二次回收,如果这次回收还没有足够的内存,才会抛出内存溢出异常。
import java.lang.ref.SoftReference;
// 软引用
SoftReference<Object> softReference = new SoftReference<>(new Object());
弱引用:弱引用也是用来描述非必需对象的,但是它的强度比软引用更弱一些,被弱引用关联的对象只能生存到下一次垃圾收集发生之前。当垃圾收集器工作时,无论当前内存是否足够,都会回收掉只被弱引用关联的对象。
import java.lang.ref.WeakReference;
// 弱引用
WeakReference<Object> weakReference = new WeakReference<>(new Object());
虚引用:虚引用是最弱的一种引用关系。一个对象是否有虚引用的存在,完全不会对其生存时间构成影响,也无法通过虚引用来取得一个对象实例。为一个对象设置虚引用关联的唯一目的就是能在这个对象被收集器回收时收到一个系统通知。
import java.lang.ref.PhantomReference;
import java.lang.ref.ReferenceQueue;
ReferenceQueue<Object> referenceQueue = new ReferenceQueue<>();
PhantomReference<Object> phantomReference = new PhantomReference<>(new Object(), referenceQueue); // 虚引用
🌴总结
在大多数普通的业务逻辑开发中,强引用就足够了,因为Java的垃圾收集器会自动管理不再被强引用指向的对象,释放它们的内存。然而,在一些高级应用场景中,比如缓存实现、内存敏感的数据结构或者需要精细控制对象生命周期的场景,这些特殊的引用类型就非常有用了。
SoftReference
适用于实现内存敏感的缓存。当系统内存足够时,软引用指向的对象不会被回收,从而提供较快的缓存访问速度;而当内存不足时,这些对象会被回收,从而避免OutOfMemoryError。WeakReference
适用于需要在不影响对象生命周期的前提下,跟踪对象是否被垃圾收集器回收的场景。比如,WeakHashMap就是使用弱引用来实现键(Key)的自动清理。PhantomReference
则更加特殊,它主要用于在对象被回收时收到一个通知,通常与ReferenceQueue
结合使用。由于虚引用不会影响对象的生命周期,因此它们不能用于访问对象,只能用于监控对象的回收情况。
🍭如何判断一个常量是废弃常量?
假如在字符串常量池中存在字符串 “abc”,如果当前没有任何 String 对象引用该字符串常量的话,就说明常量 “abc” 就是废弃常量,如果这时发生内存回收的话而且有必要的话,“abc” 就会被系统清理出常量池了。
🍭如何判断一个类是无用的类?
方法区主要回收的是无用的类,那么如何判断一个类是无用的类的呢?
判定一个常量是否是“废弃常量”比较简单,而要判定一个类是否是“无用的类”的条件则相对苛刻许多。类需要同时满足下面 3 个条件才能算是 “无用的类”:
- 该类所有的实例都已经被回收,也就是 Java 堆中不存在该类的任何实例。
- 加载该类的
ClassLoader
已经被回收。 - 该类对应的
java.lang.Class
对象没有在任何地方被引用,无法在任何地方通过反射访问该类的方法。
虚拟机可以对满足上述 3 个条件的无用类进行回收,这里说的仅仅是“可以”,而并不是和对象一样不使用了就会必然被回收。
🎄垃圾收集算法
🍭标记-清除算法
标记-清除(Mark-and-Sweep)算法分为“标记(Mark)”和“清除(Sweep)”阶段:首先标记出所有不需要回收的对象,在标记完成后统一回收掉所有没有被标记的对象。
它是最基础的收集算法,后续的算法都是对其不足进行改进得到。这种垃圾收集算法会带来两个明显的问题:
- 效率问题:标记和清除两个过程效率都不高。
- 空间问题:标记清除后会产生大量不连续的内存碎片。
🍭复制算法
为了解决标记-清除算法的效率和内存碎片问题,复制(Copying)收集算法出现了。它可以
将内存分为大小相同的两块
,每次使用其中的一块。当这一块的内存使用完后,就将还存活的对象复制到另一块去,然后再把使用的空间一次清理掉。这样就使每次的内存回收都是对内存区间的一半进行回收。
虽然改进了标记-清除算法,但依然存在下面这些问题:
- 可用内存变小:可用内存缩小为原来的一半。
- 不适合老年代:如果存活对象数量比较大,复制性能会变得很差。
🍭标记-整理算法
标记-整理(Mark-and-Compact)算法是根据老年代的特点提出的一种标记算法,标记过程仍然与“标记-清除”算法一样,但后续步骤不是直接对可回收对象回收,而是让所有存活的对象向一端移动,然后直接清理掉端边界以外的内存。
由于多了整理这一步,因此效率也不高,适合老年代这种垃圾回收频率不是很高的场景。
🍭分代收集算法
当前虚拟机的垃圾收集都采用分代收集算法,这种算法没有什么新的思想,只是根据对象存活周期的不同将内存分为几块。一般将 Java 堆分为新生代和老年代,这样我们就可以根据各个年代的特点选择合适的垃圾收集算法。
比如在新生代中,每次收集都会有大量对象死去,所以可以选择”标记-复制“算法,只需要付出少量对象的复制成本就可以完成每次垃圾收集。而老年代的对象存活几率是比较高的,而且没有额外的空间对它进行分配担保,所以我们必须选择“标记-清除”或“标记-整理”算法进行垃圾收集。
延伸面试问题: HotSpot 为什么要分为新生代和老年代?
根据上面的对分代收集算法的介绍回答。
🎄垃圾收集器
如果说收集算法是内存回收的方法论,那么垃圾收集器就是内存回收的具体实现。
🍭Serial 收集器
Serial(串行)收集器是最基本、历史最悠久的垃圾收集器了。大家看名字就知道这个收集器是一个单线程收集器了。它的 “单线程” 的意义不仅仅意味着它只会使用一条垃圾收集线程去完成垃圾收集工作,更重要的是它在进行垃圾收集工作的时候必须暂停其他所有的工作线程( “Stop The World” ),直到它收集结束。
新生代采用标记-复制算法,老年代采用标记-整理算法。
虚拟机的设计者们当然知道 Stop The World 带来的不良用户体验,所以在后续的垃圾收集器设计中停顿时间在不断缩短(仍然还有停顿,寻找最优秀的垃圾收集器的过程仍然在继续)。
但是 Serial 收集器有没有优于其他垃圾收集器的地方呢?当然有,它简单而高效(与其他收集器的单线程相比)。Serial 收集器由于没有线程交互的开销,自然可以获得很高的单线程收集效率。Serial 收集器对于运行在 Client 模式下的虚拟机来说是个不错的选择。
🍭ParNew 收集器(Parallel New Garbage Collector)
ParNew 收集器其实就是 Serial 收集器的多线程版本,除了使用多线程进行垃圾收集外,其余行为(控制参数、收集算法、回收策略等等)和 Serial 收集器完全一样。
新生代采用标记-复制算法,老年代采用标记-整理算法。
它是许多运行在 Server 模式下的虚拟机的首要选择,除了 Serial 收集器外,只有它能与 CMS 收集器(真正意义上的并发收集器,后面会介绍到)配合工作。
🍭Parallel Scavenge 收集器(JDK1.8默认使用)
Parallel Scavenge 收集器也是使用标记-复制算法的多线程收集器,它看上去几乎和 ParNew 都一样。 那么它有什么特别之处呢?
-XX:+UseParallelGC # 使用 Parallel 收集器+ 老年代串行
-XX:+UseParallelOldGC # 使用 Parallel 收集器+ 老年代并行
Parallel Scavenge 收集器关注点是吞吐量(高效率的利用 CPU)。CMS 等垃圾收集器的关注点更多的是用户线程的停顿时间(提高用户体验)。所谓吞吐量就是 CPU 中用于运行用户代码的时间与 CPU 总消耗时间的比值。 Parallel Scavenge 收集器提供了很多参数供用户找到最合适的停顿时间或最大吞吐量,如果对于收集器运作不太了解,手工优化存在困难的时候,使用 Parallel Scavenge 收集器配合自适应调节策略,把内存管理优化交给虚拟机去完成也是一个不错的选择。
新生代采用标记-复制算法,老年代采用标记-整理算法。
使用 java -XX:+PrintCommandLineFlags -version
命令查看:
🍭Serial Old 收集器
Serial 收集器的老年代版本,它同样是一个单线程收集器。它主要有两大用途:一种用途是在 JDK1.5 以及以前的版本中与 Parallel Scavenge 收集器搭配使用,另一种用途是作为 CMS 收集器的后备方案。
🍭Parallel Old 收集器
Parallel Scavenge 收集器的老年代版本。使用多线程和“标记-整理”算法。在注重吞吐量以及 CPU 资源的场合,都可以优先考虑 Parallel Scavenge 收集器和 Parallel Old 收集器。
🍭CMS 收集器
CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。它非常符合在注重用户体验的应用上使用。
CMS(Concurrent Mark Sweep)收集器是 HotSpot 虚拟机第一款真正意义上的并发收集器,它第一次实现了让垃圾收集线程与用户线程(基本上)同时工作。
从名字中的Mark Sweep这两个词可以看出,CMS 收集器是一种 “标记-清除”算法实现的,它的运作过程相比于前面几种垃圾收集器来说更加复杂一些。整个过程分为四个步骤:
- 初始标记: 暂停所有的其他线程,并记录下直接与 root 相连的对象,速度很快 ;
- 并发标记: 同时开启 GC 和用户线程,用一个闭包结构去记录可达对象。但在这个阶段结束,这个闭包结构并不能保证包含当前所有的可达对象。因为用户线程可能会不断的更新引用域,所以 GC 线程无法保证可达性分析的实时性。所以这个算法里会跟踪记录这些发生引用更新的地方。
- 重新标记: 重新标记阶段就是为了修正并发标记期间因为用户程序继续运行而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间一般会比初始标记阶段的时间稍长,远远比并发标记阶段时间短
- 并发清除: 开启用户线程,同时 GC 线程开始对未标记的区域做清扫。
从它的名字就可以看出它是一款优秀的垃圾收集器,主要优点:并发收集、低停顿。但是它有下面三个明显的缺点:
- 对 CPU 资源敏感;
- 无法处理浮动垃圾;
- 它使用的回收算法-“标记-清除”算法会导致收集结束时会有大量空间碎片产生。
🍭G1 收集器
G1 (Garbage-First) 是一款面向服务器的垃圾收集器,主要针对配备多颗处理器及大容量内存的机器. 以极高概率满足 GC 停顿时间要求的同时,还具备高吞吐量性能特征.
被视为 JDK1.7 中 HotSpot 虚拟机的一个重要进化特征。它具备以下特点:
- 并行与并发:G1 能充分利用 CPU、多核环境下的硬件优势,使用多个 CPU(CPU 或者 CPU 核心)来缩短 Stop-The-World 停顿时间。部分其他收集器原本需要停顿 Java 线程执行的 GC 动作,G1 收集器仍然可以通过并发的方式让 java 程序继续执行。
- 分代收集:虽然 G1 可以不需要其他收集器配合就能独立管理整个 GC 堆,但是还是保留了分代的概念。
- 空间整合:与 CMS 的“标记-清除”算法不同,G1 从整体来看是基于“标记-整理”算法实现的收集器;从局部上来看是基于“标记-复制”算法实现的。
- 可预测的停顿:这是 G1 相对于 CMS 的另一个大优势,降低停顿时间是 G1 和 CMS 共同的关注点,但 G1 除了追求低停顿外,还能建立可预测的停顿时间模型,能让使用者明确指定在一个长度为 M 毫秒的时间片段内,消耗在垃圾收集上的时间不得超过 N 毫秒。
G1 收集器的运作大致分为以下几个步骤:
- 初始标记
- 并发标记
- 最终标记
- 筛选回收
G1 收集器在后台维护了一个优先列表,每次根据允许的收集时间,优先选择回收价值最大的 Region(这也就是它的名字 Garbage-First 的由来) 。这种使用 Region 划分内存空间以及有优先级的区域回收方式,保证了 G1 收集器在有限时间内可以尽可能高的收集效率(把内存化整为零)。
从 JDK9 开始,G1 垃圾收集器成为了默认的垃圾收集器。